Correlation of fingertip shear force direction with somatosensory cortical activity in monkey.
نویسندگان
چکیده
To examine the activity of somatosensory cortex (S1) neurons to self-generated shear forces on the index and thumb, two monkeys were trained to grasp a stationary metal tab with a key grip and exert forces without the fingers slipping in one of four orthogonal directions for 1 s. A majority (∼85%) of slowly adapting and rapidly adapting (RA) S1 neurons had activity modulated with shear force direction. The cells were recorded mainly in areas 1 and 2 of the S1, although some area 3b neurons also responded to shear direction or magnitude. The preferred shear vectors were distributed in every direction, with tuning arcs varying from 50° to 170°. Some RA neurons sensitive to dynamic shear force direction also responded to static shear force but within a narrower range, suggesting that the direction of the shear force may influence the adaptation rate. Other neurons were modulated with shear forces in diametrically opposite directions. The directional sensitivity of S1 cortical neurons is consistent with recordings from cutaneous afferents showing that shear direction, even without slip, is a powerful stimulus to S1 neurons.
منابع مشابه
CALL FOR PAPERS Neurophysiology of Tactile Perception: A Tribute to Steven Hsiao Correlation of fingertip shear force direction with somatosensory cortical activity in monkey
Fortier-Poisson P, Langlais J-S, Smith AM. Correlation of fingertip shear force direction with somatosensory cortical activity in monkey. J Neurophysiol 115: 100–111, 2016. First published October 14, 2015; doi:10.1152/jn.00749.2014.—To examine the activity of somatosensory cortex (S1) neurons to self-generated shear forces on the index and thumb, two monkeys were trained to grasp a stationary ...
متن کاملResponses of primary somatosensory cortical neurons to controlled mechanical stimulation.
The results of psychophysical studies suggest that displacement velocity may contribute significantly to the sensation of subcortical somatosensory neurons. The cortical correlates of these phenomena, however, are not known. In the present study the responses of rapidly adapting (RA) neurons in the forelimb region of cat primary somatosensory cortex (SI) to controlled displacement of skin and h...
متن کاملSymmetric Sensorimotor Somatotopy
BACKGROUND Functional imaging has recently been used to investigate detailed somatosensory organization in human cortex. Such studies frequently assume that human cortical areas are only identifiable insofar as they resemble those measured invasively in monkeys. This is true despite the electrophysiological basis of the latter recordings, which are typically extracellular recordings of action p...
متن کاملEffect of imperceptible vibratory noise applied to wrist skin on fingertip touch evoked potentials - an EEG study.
Random vibration applied to skin can change the sense of touch. Specifically, low amplitude white-noise vibration can improve fingertip touch perception. In fact, fingertip touch sensation can improve even when imperceptible random vibration is applied to other remote upper extremity areas such as wrist, dorsum of the hand, or forearm. As such, vibration can be used to manipulate sensory feedba...
متن کاملPerceptual detection as a dynamical bistability phenomenon: a neurocomputational correlate of sensation.
Recent studies that combined psychophysical/neurophysiological experiments [de Lafuente V, Romo R (2005) Nat Neurosci 8:1698-1703] analyzed the responses from single neurons, recorded in several cortical areas of parietal and frontal lobes, while trained monkeys reported the presence or absence of a mechanical vibration of varying amplitude applied to skin of one fingertip. The analysis showed ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 115 1 شماره
صفحات -
تاریخ انتشار 2016